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Abstract
A rigorous formulation of the problem of calculating the electromagnetic
vacuum energy of an infinite dielectric cylinder is discussed. It is shown that
the physically relevant spectrum of electromagnetic excitations includes the
surface modes and photonic modes. The mathematical procedure of summing
over this spectrum is proposed, and the transition to imaginary frequencies
is accomplished. As a result, the imaginary-frequency representation for the
vacuum energy is justified which has been used in previous Casimir studies for
this configuration.

PACS numbers: 11.10.Gh, 42.50.Pq, 03.70.+k, 03.65.Sq, 11.30.Ly

1. Introduction

The notion of the elementary excitation spectrum is of paramount importance in all condensed
matter physics [1, 2]. The excitations of different types result, as a rule, in different
physical consequences. Therefore, it is of a certain interest for theoretical and experimental
investigations of the Casimir effect to answer the question: what types of the electromagnetic
oscillations are considered in the problem at hand [3–8]? Having elucidated this point one
can hope to link, in a transparent way, the Casimir force with actual physical properties of the
material boundaries. However, it is not easy to answer this question even when the Casimir
force is calculated by making use of the familiar Lifshitz formula [9–11]. A rather complicated
derivation of this formula [12] in the original papers initiated its obtaining anew by making
use mainly of the mode summation method [12–19].

The Casimir calculations for nonflat boundaries turned out to be much more involved in
comparison with those for planes [20]. Especially complicated calculations have been done for
a circular cylinder [21–38]. It was also unclear that what kinds of electromagnetic excitations
have been taken into account in these studies [39].
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The present work seeks to propose a consistent derivation of the formula for the vacuum
energy of electromagnetic field connected with a material cylinder by explicitly summing the
contributions to this energy given by different branches of the electromagnetic spectrum in
this problem.

The layout of the paper is as follows. In section 2, the spectral problem generated by the
Maxwell equations for a compact infinite cylinder is formulated rigorously and the physically
relevant spectrum of electromagnetic excitations for this configuration is determined. It is
shown that this spectrum includes surface modes (bound states) and photonic modes. In
section 3, the summation over this spectrum is accomplished by making use of the spectral
density taking into account the photonic (continues) branch of the spectrum. In conclusion,
section 4, the meaning of the obtained results is discussed briefly.

2. Physical spectrum of electromagnetic excitations for a cylinder

In the source-free case, the general solution to Maxwell equations can be represented in terms
of two independent Hertz vectors [40]:

E = ∇ × ∇ × Π′ + iµ
ω

c
∇ × Π′′, (1)

H = −iε
ω

c
∇ × Π′ + ∇ × ∇ × Π′′. (2)

Here Π′ is the electric Hertz vector, Π′′ is the magnetic Hertz vector, c is the velocity of light in
vacuum, and the Gauss units are used. The Hertz vectors obey the Helmholtz vector equation

(∇2 + k2)Π = 0, (3)

where the wave number k is given by

k2 = εµ
ω2

c2
. (4)

On the other hand, it is known that the general solution to Maxwell without sources
equations can be derived from two scalar functions which may be chosen in deferent ways
[41, 42]. For the configuration with cylindrical symmetry these functions can play the role
of the axial components of the electric (Π′) and magnetic (Π′′) Hertz vectors. The rest
components of Π′ and Π′′ are zero in this case. As a result, the Helmholtz vector equation (3)
reduces to the scalar Helmholtz equations for Π′

z ≡ �′ and Π′′
z ≡ �′′(

� + εµ
ω2

c2

)
� = 0, � = �′,�′′ (5)

with the following general solutions:

�′ =
∑

n=0,±1,±2,...

anf
TM
n (r) eihz+inθ , (6)

�′′ =
∑

n=0,±1,±2,...

bnf
TE
n (r) eihz+inθ . (7)

The cylindrical coordinates (r, θ, z) are used and the z-axis coincides with the axis of a
circular infinite cylinder of radius a. The medium inside the cylinder has the permittivity
ε1 and permeability µ1. These quantities outside the cylinder acquire the values ε2 and
µ2, respectively. We assume for definiteness that the velocities of light inside and outside the
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cylinder, c1 and c2, respectively, obey the inequality c1 < c2, where cs = c/(εsµs), s = 1, 2.

The wave vector along the z-axis is denoted by h. The amplitudes an and bn for the solutions
inside the cylinder will be denoted by ai

n and bi
n, respectively, and in the same way for solutions

outside the cylinder we introduce the amplitudes ae
n and be

n.
The functions f TE

n (r) and f TM
n (r) in the general solutions (6) and (7) obey the radial wave

equation

d2fn

dr2
+

1

r

dfn

dr
+

(
k2 − h2 − n2

r2

)
fn = 0, fn(r) = f TE

n (r), f TM
n (r). (8)

Inside the cylinder we put

fn(r) = Jn(λ1r), n = 0, 1, . . . , 0 < r < a, (9)

where Jn(z) is the Bessel function, λ1 =
√

k2
1 − h2, k2

1 = ω2/c2
1 = ε1µ1ω

2/c2. Outside the
cylinder we first consider ‘outgoing’ waves

fn(r) = H(1)
n (λ2r), n = 0, 1, . . . , r > a, (10)

where H(1)(z) is the Hankel function of the first kind, λ2 =
√

k2
2 − h2, k2

2 = ω2/c2
2 =

ε2µ2ω
2/c2.

In the radial solutions (9) and (10) the sign of λ2
s = k2

s − h2, s = 1, 2, is not fixed yet.
Thus, in our consideration the solutions

fn(r) = In(λ̄1r) for r < a (11)

and

fn(r) = Kn(λ̄2r) for r > a (12)

are also admissible. Here λ̄2
s = h2 − k2

s , s = 1, 2, In(z) = i−nJn(iz) and Kn(z) =
in+1 π

2 Hn(iz) are the modified Bessel functions [43]. The sign of λ2
s , s = 1, 2, will be fixed

below.
On the cylinder surface the matching conditions should be satisfied. These conditions

require the continuity of tangential components of fields E and H when crossing cylinder
surface

discont (E‖) = 0, discont (H‖) = 0. (13)

These are the conditions that couple the TE- and TM-solutions in the problem under study,
when c1 �= c2. Indeed, the matching conditions (13) give rise to a unique frequency equation
determining admissible values of the spectral parameter ω simultaneously for TE- and TM-
solutions:

ω2a4

c2

(
ε1λ2

J ′
n

Jn

− ε2λ1
H ′

n

Hn

) (
µ1λ2

J ′
n

Jn

− µ2λ1
H ′

n

Hn

)
− n2h2a2

λ2
1λ

2
2

[
ω2

c2
(ε1µ1 − ε2µ2)

]2

= 0,

n = 0, 1, 2, . . . . (14)

In this equation

Jn ≡ Jn(λ1a), Hn ≡ H(1)
n (λ2a), λs = +

√
ω2/c2

s − h2, s = 1, 2, (15)

the prime on the functions Jn and Hn means differentiation with respect to their arguments.
When c1 = c2 the last term on the left-hand side of (14) vanishes and this equation

splits into two independent equations which determine the eigenfrequencies for the TE- and
TM-solutions separately. The same takes place for n = 0.
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The roots of (14) are important in radio-engineering when developing the radio dielectric
waveguides [44–50] and in fiber optics (optical waveguides [51, 52]). The results of the
investigation of the frequency equation (14) determining the spectrum in the problem at hand
can be summarized in the following way. All the real roots of this equation lie in the interval

c1h < ω < c2h. (16)

These roots make up two discrete sequences. In the interval (16), the frequency equation (14)
can be rewritten in the form

ω2a4

c2

(
ε1λ̄2

J ′
n

Jn

+ ε2λ1
K ′

n

Kn

) (
µ1λ̄2

J ′
n

Jn

+ µ2λ1
K ′

n

Kn

)
− n2h2a2

λ2
1λ̄

2
2

[
ω2

c2
(ε1µ1 − ε2µ2)

]2

= 0,

n = 0, 1, 2, . . . (17)

with the notation Kn ≡ Kn(λ̄2a).
When frequency ω equals the real roots of equation (17), located in the interval (16),

the ‘outgoing’ waves (10) become the functions decaying in the radial direction (12) (surface
or evanescent waves). These eigenmodes describe the propagation of electromagnetic waves
along the cylinder (waveguide solutions). The radial functions (11) are not realized in the
problem under consideration.

Now we address the complex roots of the frequency equation (14). In the strip of the
complex frequency plane

0 < Re ω < c2h (18)

there are no complex roots of (14) with Im ω �= 0.
In the semi-plane

Re ω > c2h (19)

for sure there are complex roots of (14) with Im ω �= 0. Indeed, in the domain (19) the left-hand
side of (14) is a complex function of the complex variable ω. The complex eigenfrequencies
of a dielectric cylinder lead to leaky (radiating) modes. It is clear that these modes cannot
carry the electromagnetic energy along the cylinder. For us it is important that the modes with
complex ω (quasi-normal modes [39]) do not satisfy standard completeness condition and as
a result they cannot be used for quantization of electromagnetic field in the problem at hand.

In order to get rid of the complex eigenfrequencies and consequently to escape leaky
or radiating modes we shall consider, outside the cylinder, the scattering states instead of
outgoing waves. The scattering solutions to Maxwell equations can be derived from outgoing
solutions by making use of the substitutions

ae
nH

(1)
n (λ2r) → a+

nH +
n (λ2r) + a−

n H−
n (λ2r)

be
nH

(1)
n (λ2r) → b+

nH
+
n (λ2r) + b−

n H−
n (λ2r).

(20)

For simplicity in (20) the notations

H +
n ≡ H(1)

n , H−
n ≡ H(2)

n (21)

are introduced.
As a result, for a given n and h we have six amplitudes ai

n, b
i
n, a

+
n , a−

n , b+
n, b

−
n . The

matching conditions at the cylinder surface lead to four linear homogeneous equations for
these amplitudes. Hence no restrictions arise here for the spectral parameter ω2/c2.

Eliminating in these equations the amplitudes ai
n and bi

n we are left with two equations in
four amplitudes a±

n and b±
n :

K−
(

a+
n

b+
n

)
= K+

(
a−

n

b−
n

)
, K± = ∓

(
α∓ β∓

γ ∓ α∓

)
, (22)
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where

α±
n = −nh

a

(
1 − λ2

2

λ2
1

)
,

β±
n = −i

ω

c

(
µ2λ2H

±
n

′ − µ1λ1
J ′

n

Jn

λ2
2

λ2
1

H±
n

)
, (23)

γ ±
n = i

ω

c

(
ε2λ2H

±
n

′ − ε1λ1
J ′

n

Jn

λ2
2

λ2
1

H±
n

)
.

The S matrix in this problem(
a+

n

b+
n

)
= S

(
a−

n

b−
n

)
(24)

obeys obviously the following matrix equation:

K−S = K+, (25)

and

det S = det K+

det K− . (26)

By a direct calculation one can easily show that det K− coincides (up to unimportant multiplier)
with the left-hand side of the frequency equation (14). Thus, this equation can be rewritten in
the form

det K− = 0. (27)

Surprisingly formulae (26) and (27) for the S matrix were not known in the literature devoted
to the electromagnetic scattering by a cylinder [54, 55].

Summarizing we infer that the spectrum of electromagnetic oscillations in the problem
under study consists of discrete values ωnα, c1h < ωnα < c2h, corresponding to the surface
modes and a continuous branch of the spectrum with real positive ω, c2h < ω < ∞. In
mathematical scattering theory [53], it is proved that the bound states and scattering states
form together a complete set.

It is worth noting here that there is no complete analogy between analytic properties of
the scattering matrix (or the Jost function) in the problem under study and in the standard
theory of potential scattering [53]. Indeed, in the case of a scalar potential scattering we have,
instead of frequency equation (14) or (27), the requirement of vanishing the Jost function
F(−k). The bound states in potential scattering lead to pure imaginary zeros of this function.
On the real axes k this function has no zeros. At first sight we have here a contradiction.
However it is not the case. The point is that the bound states (or surface modes) in the Casimir
calculations are due to the appearance of the longitudinal wave vector h in these studies. In
the standard potential scattering there is no such a vector. This vector is also absent in the
Casimir calculations for a dielectric ball, and as a consequence in the latter problem there are
no surface modes (bound states). All this implies in particular that the analytical properties of
the scattering matrix in the Casimir calculations should be revealed by a direct analysis of its
explicit form without referring to the potential scattering.

3. Summation over the spectrum and transition to imaginary frequencies

Now we address the calculation of the vacuum energy in the problem at hand proceeding from
the standard mode-by-mode summation

Ec = 1

2

∑
{q}

ωq =
∫ ∞

−∞

dh

2π

∞∑′

n=0

[∑
α

ωnα(h) +
∫ ∞

c2h

ω�ρn(ω, h) dω

]
, (28)
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where the prime over the sum sign means that the term with n = 0 is taken with the weight
1
2 . The first term in square brackets is responsible for the surface waves contribution and
the second one describes the contribution of the photonic modes. The latter contribution is
represented by making use of the respective spectral shift function �ρ [39]. The rigorous
mathematical scattering theory gives the following expression for the spectral density shift:

�ρ(k) ≡ ρ(k) − ρ0(k) = 1

2π i

d

dk
tr ln S(k) = 1

2π i

d

dk
ln det S(k). (29)

Here, ρ(k) is the density of states for a given potential (or for a given boundary condition in
the case of compound media) and ρ0(k) is the spectral density in the respective free spectral
problem (for vanishing potential or for homogeneous unbounded space). It is obvious that
in the Casimir calculations one has to use just �ρ(k) subtracting at this point the so-called
Minkowski spacetime contribution to the vacuum energy.

In the case of scalar scattering problem the Jost functions f (k) and f (−k), the scattering
matrix S(k) and the phase shift δ(k) are related by the formula

S(k) = e2iδ(k) = f (k)

f (−k)
. (30)

Substitution of (30) into (28) gives more familiar formula for spectral density [56]:

�ρ(k) = 1

2π i

d

dk
ln

f (k)

f (−k)
= 1

π

d

dk
δ(k). (31)

In the problem under consideration the TE and TM modes do not decouple. Therefore
we are dealing here with the matrix (2 × 2) scattering problem, and we must use the spectral
density defined by (29).

The contribution of the surface modes in (28) can be represented by the contour integral∑
α

ωnα = 1

2π i

∮
C

ω
d

dω
ln Fn(ω) dω, (32)

where Fn(ω) is the left-hand side of (17). This equation was written for real ω. However, in
the contour integral (32) an analytical continuation of this function to the complex frequency
plane should be used. It can be done immediately in terms of det K+ (lower semi-plane ω) and
det K− (upper semi-plane ω). After that we can use for both terms in (28) the contour integral
representations with the contours C+ and C−, respectively. The contour C− starts at i∞ and
goes along the positive imaginary axis to the origin and after that it goes along the positive
real semi-axis to infinity. The contour C+ is obtained by the reflection of C− to the upper
semi-plane ω. As a result, we arrive at the following imaginary-frequency representation of
the vacuum energy in the problem at hand:

Ec =
∫ ∞

−∞

dh

2π

∞∑′

n=0

∫ ∞

0
y

d

dy
ln Fn(iy, h) dy, (33)

where Fn(ω, h) is the left-hand side of the frequency equation (14). It is this representation
that has been used in the Casimir calculations for a material cylinder.

4. Conclusion

We have shown that in the case of a material cylinder there are two types of electromagnetic
excitations which are physically relevant: (i) surface modes and (ii) photonic modes. For a
consistent transition to imaginary frequencies both the branches of the spectrum are to be taken
into account. The contribution to the Casimir energy due to the surface modes and photonic
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modes can be separated only in terms of real frequencies. Upon transition to imaginary
frequencies these contributions are indivisible. Presented consideration rigorously justifies
the imaginary-frequency representation for the Casimir energy of a compact infinite cylinder
that has been used in many previous papers dealing with the investigation of this energy.

It should be noted that the mathematical consideration presented here is completely
applicable to the Lifshitz configuration, namely, to an infinite dielectric plate placed in vacuum
(dielectric films).
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